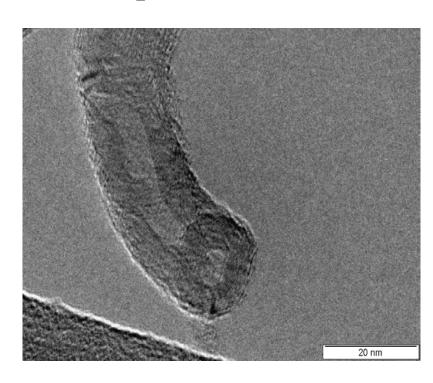

Investor Presentation

Greg Solomon
Chairman
July 2015

Corporate Structure

*EdenCrete Industries Inc. is to be the US EdenCrete™ production and marketing company

Carbon Nanotube Project



Eden/UQ Developed Pyrolysis Process CNT/CNF from Natural Gas with no CO₂ (Eden 100%)

 CH_4 + Catalyst + Heat = $C + 2H_2$

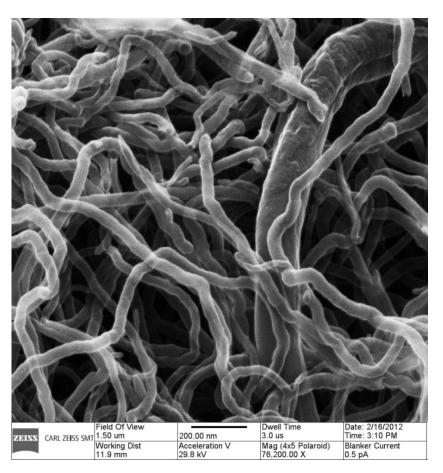
Multi-walled carbon nanotubes:

- Tensile strength 200-300x steel
- Approx. 17% the weight of steel
- High electrical/thermal conductivity
- Bulk uses concrete/plastics/polymers
- ARC project with University of Queensland on plastics/ polymers
- Patents in 8 countries

TEM image of Eden's MWCNT

Eden's CNT/CNF Production

- Eden's Pilot Commercial
 Scale Reactors, Denver
- Scalable, modular reactors
- Efficient catalyst production
- High quality/low cost CNT/CNF


Development of CNT in Concrete

- Significant global research conducted over 5 8 years
- Eden Innovations (Denver) Testing and developing for 4 years
- Civil Contractors Federation Environment Award Australia 2014
- Monash University (Melbourne) Collaboration 2011-2014
- Deakin University (Melbourne) Proposed Collaboration 2015-2018
 - 2015 ARC Linkage Grant \$300,000 funding over 3 years
- Independent US and Australian trials 2015

CNT in Fresh Cement Paste

Build-up of dense, hydrated cement on surface of CNT (top right)

- CNT provide:
 - nucleation points for cement hydration
 - > nano-scale fibre re-enforcement.
- CNT facilitate denser, stronger cement
- Other larger-scale fibres provide only nano-scale fibre reinforcement.

Monash University Helium Ion Microscope Image

CNT in Concrete - Benefits

• Benefits – denser, stronger, tougher concrete

- > Reduced costs building / maintenance
- > Less concrete / less steel re-enforcing required
- > Greater strength compressive and flexural/tensile
- > Reduced abrasion longer life, harder wearing concrete
- > Reduced corrosion denser, less permeable concrete
- Liquid surfactant added during batching process

CNT in Concrete – Results to Date

US and Australian Concrete Trials

- Results from US and Australian Trials include:
 - Compressive strength < 39% increase</p>
 - Tensile strength < 48% increase</p>
 - Permeability < 55% reduction (improvement)</p>
 - > Abrasion rate < 48% reduction (improvement)

US / Australian Trial Results

US Trials 2015 – Metro Mix- Colorado- Moderate Strength Concrete

	Compressive Str (psi)			Tensile Str (psi)			B Electrical Perm (kΩ.cm)		
	21 D	28 D	56 D	21 D	28 D	56 D	21 D	28 D	56 D
Control	4681	4981	5195	-	319	343	-	3.7	4.1
EdenCrete 500	5792	5843	6694	1	463	507	_	5.7	6.3
Precent Inc from Control	24%	17%	29%	-	45%	48%	-	53%	55%

Australian Trials 2015 – Global Concrete Company- High Flex Strength Concrete

	Compressive Str (Mpa)			Flexural Str (Mpa)			B Electrical Perm (kΩ.cm)		
	7D	28 D	56 D	21 D	28 D	56 D	21 D	28 D	56 D
Control	41	56.5	-	-	6.4	-	-	-	-
EdenCrete 500	55.5	78.5	-	-	7.7	-	-	-	-
Precent Inc from Control	35.37%	38.94%	-	-	20.31%	-	-	-	-



CNT in Concrete- Applications

Global Applications

- Increased Abrasion Resistance
 - o road and bridge surfaces, pavements, floors
- Lower Permeability
 - o roads, bridges, runways (subject to "freeze thaw"/salt conditions)
 - coastal and marine applications
 - o dams, spillways, sewer /water pipelines
- Increased Compressive and Tensile Strength
 - high rise buildings, bridges, retaining walls, pre-fabricated concrete applications

US Marketing Plans

Initial target markets

US Infrastructure / Pre-fabricated Concrete / Ready Mix Concrete

- **US Infrastructure** including interstate highways (73,000kms*) and bridges
 - > Interstate Highways \$40bn est. annual repair bill
 - use≈380mt of concrete p.a.(40% of US concrete market)*
 - > Georgia Infrastructure
 - Includes a network of major interstate highways
 - Over 15,000 bridges- more than 4,000 identified as non-repairable
 - Estimated bridge replacement costs- over US\$300m p.a. for 20 years

(*derived from US Geological Survey Data -2005)

US Production and Funding Strategy

- Expand production to 1,000 tonne p.a. CNT 18-42 months
 - ➤ Sufficient for ≈ 4% of annual US Interstate Highway requirements
 - Preliminary budget US\$52-65 million
- Future planned expansion- 10,000 tonnes pa of CNT
- Funding Strategy
 - State Government / County / Authorities Incentives
 - Equity- existing shareholders and new investors
 - Debt financing- dependent on off-take agreements
 - Future cash flow and debt financing

US Market Development

Progress to date

- Initial approaches to Georgia DOT and Colorado DOT
- On-going trials in Colorado and for pre-fabricated concrete products
- Georgia DOT laboratory tests/field trials anticipated August 2015
- Design work for first stage CNT production scale-up underway
- Various factory sites in Georgia being investigated
- State Govt / County / Authorities Incentives being discussed
- Other possible locations may be considered
- Decisions targeted within 2-3 months

OptiBlend™ Dual Fuel System

- **Displaces up to 70% of diesel with natural gas** in diesel engines
- **US market** shale gas exploration / back-up power
- Indian market gensets / locomotives / shale gas exploration
- Significant cost savings
 - Payback period often less than 12 months for larger gensets
- Total sales to date >140 units (≈US\$4.5million)
- **Cummins Inc** selected OptiBlendTM for its drilling rig power modules
- Significant long term potential several new projects under discussion

Corporate Details*

ASX Codes: EDE, EDEO

Total Issued Shares: 945m

Total Issued Options: 190m

(3 cents- 30 Sept 2018)

Share Price: \$0.052

Market Capitalisation: \$49.1m

Major Shareholder: Tasman Resources Ltd – 46.16%

^{*} As at 24 July 2015

ASX: EDE

Greg Solomon

Executive Chairman

Level 15, 197 St Georges Terrace,
Perth, Western Australia,
Telephone +618 9282 5889

Email gsolomon@edenenergy.com.au

Website: www.edenenergy.com.au